Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068975

RESUMO

Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Hormônios Peptídicos , Suínos , Animais , Ratos , Neurônios Aferentes , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Neurônios , Substância P , Gânglios Espinais , Dor , Mamíferos
2.
Cancers (Basel) ; 15(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831570

RESUMO

Kisspeptin (KISS) is a natural peptide-discovered in 1996 as a factor inhibiting the ability to metastasize in malignant melanoma. This protein plays also a regulatory role in the process of puberty, the menstrual cycle, spermatogenesis, implantation and development of the human placenta. The present study aimed to evaluate the expression of KISS and its receptor GPR54 in endometrial cancer (EC) tissue, depending on the histological type of cancer, its stage, various demographic characteristics, and clinical conditions in 214 hysterectomy patients. Expression of KISS and GPR54 was confirmed in 99.5% and 100% of the cases, respectively. Hormone replacement therapy and the coexistence of the anti-Müllerian type 2 receptor in cancer tissue enhanced KISS expression. Smoking, on the other hand, decreased KISS expression. GPR54 expression increased with the advancement of the disease (according to FIGO classification). Also, the presence of the anti-Müllerian type 2 receptor in EC increased the level of GPR54. Hypertension, age and miscarriage harmed the presence of GPR54. The histological type of cancer, diabetes type 2, body mass index, hormonal contraception, number of deliveries, birth weight of newborns, breastfeeding time, and the presence of AMH in EC tissue were not associated with the expression of either KISS nor GPR54. The KISS level was also significantly related to the GPR54 level. Considering that KISS is a non-toxic peptide with antimetastatic properties, further investigation is essential to determine the clinical significance of this peptide.

3.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766804

RESUMO

Resiniferatoxin (RTX) is a potent capsaicin analog used as a drug for experimental therapy to treat neurogenic disorders associated with enhanced nociceptive transmission, including lower urinary tract symptoms. The present study, for the first time, investigated the transcriptomic profile of control and RTX-treated porcine urinary bladder walls. We applied multistep bioinformatics and discovered 129 differentially expressed genes (DEGs): 54 upregulated and 75 downregulated. Metabolic pathways analysis revealed five significant Kyoto Encyclopedia of Genes and Genomes (KEGG) items ('folate biosynthesis', 'metabolic pathways', 'sulfur relay system', 'sulfur metabolism' and 'serotonergic synapse') that were altered after RTX intravesical administration. A thorough analysis of the detected DEGs indicated that RTX treatment influenced the signaling pathways regulating nerve growth, myelination, axon specification, and elongation. Many of the revealed DEGs are involved in the nerve degeneration process; however, some of them were implicated in the initiation of neuroprotective mechanisms. Interestingly, RTX intravesical installation was followed by changes in the expression of genes involved in synaptic plasticity and neuromodulation, including 5-HT, H2S, glutamate, and GABA transmission. The obtained results suggest that the toxin may exert a therapeutic, antinociceptive effect not only by acting on TRPV1 receptors.


Assuntos
Diterpenos , Bexiga Urinária , Animais , Suínos , Diterpenos/farmacologia , Administração Intravesical , Perfilação da Expressão Gênica
4.
J Clin Med ; 10(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923100

RESUMO

Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a severe disease affecting the human venous system, accompanied by high morbidity and mortality rates. The aim of the study was to establish a new porcine VTE model based on the formation of the thrombus in vivo. The study was performed on 10 castrated male pigs: thrombus was formed in each closed femoral vein and then successfully released from the right femoral vein into the circulation of animals. In six pigs PE was confirmed via both computed tomography pulmonary angiography and an autopsy. Our research presents a novel experimental porcine model of VTE that involves inducing DVT and PE in the same animal in vivo, making it suitable for advanced clinical research and testing of future therapies.

5.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923632

RESUMO

Impaired fetal growth is one of the most important causes of prematurity, stillbirth and infant mortality. The pathogenesis of idiopathic fetal growth restriction (FGR) is poorly understood but is thought to be multifactorial and comprise a range of genetic causes. This research aimed to investigate non-coding RNAs (lncRNAs) in the placentas of male and female fetuses affected by FGR. RNA-Seq data were analyzed to detect lncRNAs, their potential target genes and circular RNAs (circRNAs); a differential analysis was also performed. The multilevel bioinformatic analysis enabled the detection of 23,137 placental lncRNAs and 4263 of them were classified as novel. In FGR-affected female fetuses' placentas (ff-FGR), among 19 transcriptionally active regions (TARs), five differentially expressed lncRNAs (DELs) and 12 differentially expressed protein-coding genes (DEGs) were identified. Within 232 differentially expressed TARs identified in male fetuses (mf-FGR), 33 encompassed novel and 176 known lncRNAs, and 52 DEGs were upregulated, while 180 revealed decreased expression. In ff-FGR ACTA2-AS1, lncRNA expression was significantly correlated with five DEGs, and in mf-FGR, 25 TARs were associated with DELs correlated with 157 unique DEGs. Backsplicing circRNA processes were detected in the range of H19 lncRNA, in both ff- and mf-FGR placentas. The performed global lncRNAs characteristics in terms of fetal sex showed dysregulation of DELs, DEGs and circRNAs that may affect fetus growth and pregnancy outcomes. In female placentas, DELs and DEGs were associated mainly with the vasculature, while in male placentas, disturbed expression predominantly affected immune processes.


Assuntos
Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Sexismo , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transcriptoma/genética
6.
Cells ; 9(10)2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080800

RESUMO

Anti-Müllerian hormone (AMH) is responsible for the Müllerian ducts' regression in male fetuses. In cells of cancers with AMH receptors (AMHRII), AMH induces cell cycle arrest or apoptosis. As AMH occurs naturally and does not exhibit significant side effects while reducing neoplastic cell colonies, it can be considered as a potential therapeutic agent for cancer treatment. The purpose of this study was to assess the AMHRII expression in endometrial cancer (EC) in correlation to various demographic data and clinical conditions. Immunohistochemical analysis was used to assess AMHRII expression in EC tissue samples retrieved from 230 women with pre-cancerous state of endometrium (PCS) and EC. AMHRII was detected in 100% of samples. No statistical difference was observed for AMHRII expression depending on the histopathological type of EC, cancer staging, body mass index, and age, as well as the number of years of menstruation, births and miscarriages, and average and total breastfeeding time. Diabetes mellitus type 2 is the only factor that has an impact on AMHRII expression in EC tissue. Thus, this study supports the idea of theoretical use of AMH in EC treatment because all histopathological types of EC at all stages of advancement present receptors for AMH.


Assuntos
Neoplasias do Endométrio/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Aborto Espontâneo/metabolismo , Hormônio Antimülleriano/metabolismo , Aleitamento Materno , Neoplasias do Endométrio/patologia , Feminino , Humanos
7.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917529

RESUMO

Intrauterine growth restriction (IUGR) is a serious pathological complication associated with compromised fetal development during pregnancy. The aim of the study was to broaden knowledge about the transcriptomic complexity of the human placenta by identifying genes potentially involved in IUGR pathophysiology. RNA-Seq data were used to profile protein-coding genes, detect alternative splicing events (AS), single nucleotide variant (SNV) calling, and RNA editing sites prediction in IUGR-affected placental transcriptome. The applied methodology enabled detection of 37,501 transcriptionally active regions and the selection of 28 differentially-expressed genes (DEGs), among them 10 were upregulated and 18 downregulated in IUGR-affected placentas. Functional enrichment annotation indicated that most of the DEGs were implicated in the processes of inflammation and immune disorders related to IUGR and preeclampsia. Additionally, we revealed that some genes (S100A13, GPR126, CTRP1, and TFPI) involved in the alternation of splicing events were mainly implicated in angiogenic-related processes. Significant SNVs were overlapped with 6533 transcripts and assigned to 2386 coding sequence (CDS), 1528 introns, 345 5' untranslated region (UTR), 1260 3'UTR, 918 non-coding RNA (ncRNA), and 10 intergenic regions. Within CDS regions, 543 missense substitutions with functional effects were recognized. Two known mutations (rs4575, synonymous; rs3817, on the downstream region) were detected within the range of AS and DEG candidates: PA28ß and PINLYP, respectively. Novel genes that are dysregulated in IUGR were detected in the current research. Investigating genes underlying the IUGR is crucial for identification of mechanisms regulating placental development during a complicated pregnancy.


Assuntos
Retardo do Crescimento Fetal/genética , Transcriptoma , Processamento Alternativo , Feminino , Retardo do Crescimento Fetal/metabolismo , Humanos , Masculino , Neovascularização Fisiológica , Placenta/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez
8.
Int J Mol Sci ; 20(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884769

RESUMO

Anti-Müllerian hormone (AMH) is a commonly known factor secreted by Sertoli cells, responsible for regression of the Müllerian ducts in male fetuses. AMH has also other functions in humans. In vivo and in vitro studies have shown that AMH inhibits cell cycle and induces apoptosis in cancers with AMH receptors. The aim of the study was to assess whether the tissue of pre-cancerous states of endometrium (PCS) and various histopathologic types of endometrial cancer (EC) exhibit the presence of AMH. We aimed to investigate whether the potential presence of the protein concerns menopausal women or those regularly menstruating, and whether is related to cancers with a good or a bad prognosis, as well as what other factors may influence AMH expression. The undertaken analysis was carried out on tissues retrieved from 232 women who underwent surgical treatment for PCS and EC. Tissues were prepared for immunohistochemical assessment with the use of a tissue microarrays method. AMH expression was confirmed in 23 patients with well differentiated endometrioid adenocarcinoma (G1), moderately differentiated endometrioid adenocarcinoma (G2), clear cell carcinoma (CCA) and nonatypical hyperplasia. AMH was not found in EC tissues in regularly menstruating women. An appropriately long mean period of breastfeeding in line with a prolonged period of hormonal activity had a positive effect on AMH expression. Our results may suggest that AMH is a factor which protects the organism against cancer, and should be further investigated as a potential prognosis marker and a therapeutic agent.


Assuntos
Hormônio Antimülleriano/análise , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Endométrio/patologia , Adulto , Idoso , Aleitamento Materno , Carcinoma Endometrioide/diagnóstico , Neoplasias do Endométrio/diagnóstico , Feminino , Humanos , Menopausa , Menstruação , Pessoa de Meia-Idade , Prognóstico
9.
Int J Mol Sci ; 19(7)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954144

RESUMO

Development of particular structures and proper functioning of the placenta are under the influence of sophisticated pathways, controlled by the expression of substantial genes that are additionally regulated by long non-coding RNAs (lncRNAs). To date, the expression profile of lncRNA in human term placenta has not been fully established. This study was conducted to characterize the lncRNA expression profile in human term placenta and to verify whether there are differences in the transcriptomic profile between the sex of the fetus and pregnancy multiplicity. RNA-Seq data were used to profile, quantify, and classify lncRNAs in human term placenta. The applied methodology enabled detection of the expression of 4463 isoforms from 2899 annotated lncRNA loci, plus 990 putative lncRNA transcripts from 607 intergenic regions. Those placentally expressed lncRNAs displayed features such as shorter transcript length, longer exon length, fewer exons, and lower expression levels compared to messenger RNAs (mRNAs). Among all placental transcripts, 175,268 were classified as mRNAs and 15,819 as lncRNAs, and 56,727 variants were discovered within unannotated regions. Five differentially expressed lncRNAs (HAND2-AS1, XIST, RP1-97J1.2, AC010084.1, TTTY15) were identified by a sex-bias comparison. Splicing events were detected within 37 genes and 4 lncRNA loci. Functional analysis of cis-related potential targets for lncRNAs identified 2021 enriched genes. It is presumed that the obtained data will expand the current knowledge of lncRNAs in placenta and human non-coding catalogs, making them more contemporary and specific.


Assuntos
Placenta/metabolismo , RNA Longo não Codificante/genética , Biologia Computacional , Éxons/genética , Feminino , Humanos , Gravidez , RNA Mensageiro/genética , Análise de Sequência de RNA
10.
Int J Mol Sci ; 18(6)2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594357

RESUMO

This study presents pioneering data concerning the human pregnancy-associated glycoprotein-Like family, identified in the genome, of the term placental transcriptome and proteome. RNA-seq allowed the identification of 1364 bp hPAG-L/pep cDNA with at least 56.5% homology with other aspartic proteinases (APs). In silico analyses revealed 388 amino acids (aa) of full-length hPAG-L polypeptide precursor, with 15 aa-signal peptide, 47 aa-blocking peptide and 326 aa-mature protein, and two Asp residues (D), specific for a catalytic cleft of the APs (VVFDTGSSNLWV91-102 and AIVDTGTSLLTG274-285). Capillary sequencing identified 9330 bp of the hPAG-L gene (Gen Bank Acc. No. KX533473), composed of nine exons and eight introns. Heterologous Western blotting revealed the presence of one dominant 60 kDa isoform of the hPAG-L amongst cellular placental proteins. Detection with anti-pPAG-P and anti-Rec pPAG2 polyclonals allowed identification of the hPAG-L proteins located within regions of chorionic villi, especially within the syncytiotrophoblast of term singleton placentas. Our novel data extend the present knowledge about the human genome, as well as placental transcriptome and proteome during term pregnancy. Presumably, this may contribute to establishing a new diagnostic tool for examination of some disturbances during human pregnancy, as well as growing interest from both scientific and clinical perspectives.


Assuntos
Ácido Aspártico Proteases/genética , Placenta/metabolismo , Proteínas da Gravidez/genética , Sequência de Aminoácidos , Ácido Aspártico Proteases/metabolismo , Sequência de Bases , DNA Complementar/genética , Éxons , Feminino , Perfilação da Expressão Gênica , Ordem dos Genes , Genômica/métodos , Humanos , Íntrons , Placenta/enzimologia , Gravidez , Proteínas da Gravidez/metabolismo , Transporte Proteico , Análise de Sequência de DNA , Transcriptoma
11.
Funct Integr Genomics ; 17(5): 551-563, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28251419

RESUMO

The human placenta is a particular organ that inseparably binds the mother and the fetus. The proper development and survival of the conceptus relies on the essential interplay between maternal and fetal factors involved in cooperation within the placenta. In our study, high-throughput sequencing (RNA-seq) was applied to analyze the global transcriptome of the human placenta during uncomplicated pregnancies. The RNA-seq was utilized to identify the global pattern of the gene expression in placentas (N = 4) from women in single and twin pregnancies. During analyses, we obtained 228,044 transcripts. More than 91% of them were multi-exon, and among them 134 were potentially unknown protein coding genes. Expression levels (FPKM) were estimated for 38,948 transcriptional active regions, and more than 3000 of genes were expressed with FPKM >20 in each sample. Additionally, all unannotated transcripts with estimated FPKM values were localized on the human genome. Highly covered splice junctions unannotated in the human genome (6497) were identified, and among them 30 were novel. To gain a better understanding of the biological implications, the assembled transcripts were annotated with gene ontology (GO) terms. Single nucleotide variants were predicted for the transcripts assigned to each analyzed GO category. Our results may be useful for establishing a general pattern of the gene expression in the human placenta. Characterizing placental transcriptome, which is crucial for a pregnancy's outcome, can serve as a basis for identifying the mechanisms underlying physiological pregnancy, as well as may be useful for an early detection of the genomic defects.


Assuntos
Placenta/metabolismo , Transcriptoma , Adulto , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Gravidez , Gravidez de Gêmeos/genética , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...